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ABSTRACT

The field of agent-based modeling has been conducting simulations for some time now with micro-
agents that can simulate complex phenomena such as the spread of diseases. Recent research has
begun exploring the feasibility of incorporating generative AI elements, mainly Large Language
Models (LLMs) like ChatGPT or LLaMa, into social simulations, including agent-based ones.
LLMs show promise in mimicking human-like patterns, but several questions of social biases,
representativeness, and technical limitations remain. Therefore, how do we evaluate the efficacy
and utility of these simulations? Taking inspiration from traditional quantitative social sciences,
specifically measurement theory, we attempt to formulate quality concepts for LLM-based social
simulations that are adapted to its specific concepts and facets of current LLM technology. In doing
so, we design a framework that enumerates conceptual errors and biases that can occur at different
stages of the simulation lifecycle, enabling simulation designers to identify and reflect on them in
a systematic approach. Our framework is further crystallized into a checklist that researchers can
fill out when conducting simulation studies to further document potential limitations and mitigation
attempts. Our work attempts to establish concrete quality criteria for LLM-based social simulations
that enable more transparent research while surfacing critical issues in current LLM technology that
hinder effective simulations.

1 Introduction

Agent-based models (ABMs) offer a conceptual framework for simulating the actions and interactions of autonomous
agents to understand the behavior of a system and investigate emergent phenomena. LLMs offer a powerful alternative
to traditional ABMs due to their strong text generation capabilities, allowing for more realistic, rich, and detailed
simulations Horton (2023); Bail (2024); Anthis et al. (2025); Kozlowski and Evans (2024). Recent research has
discussed the power of LLM simulations due to ‘algorithmic fidelity’ Argyle et al. (2023) — the training data of these
LLMs encode biases such as demographic or behavioral biases, so it could be reasonable to believe that these LLMs
can capture a wide variety of human social reality. However, it is unclear how to evaluate and validate these simulations,
particularly since there are persisting questions of algorithmic bias — for which types of people is there sufficient
algorithm fidelity? Furthermore, the alignment process of LLMs introduce further distortions, e.g., mechanisms that
hinder models from becoming toxic and raise questions about whether these LLMs exaggerate prosocial tendencies
in solutions Chang et al. (2025). Establishing a systematic, consistent, and unified framework for validating LLM
simulations would allow us to benchmark different LLM backends and quantify the added value of LLM simulations
compared to existing ABMs.

Here when we mean LLM simulations or agents, we specifically mean using Large Language Models like ChatGPT
to generate agents, which can be individuals or composite units, humans or other non-human entities like companies.
These agents are differentiated from other assistive functions of LLMs such as content analysis because these agents
themselves are objects of study. Therefore, the use of LLMs for content annotation or assistive agents is out of scope.
Instead, we’re interested in LLM agents for simulating hypotheticals. We aim to situate these LLMs in versatile settings;
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Figure 1: Summary of Generative LLM Social Simulations and their Components.

from individual and fully isolated LLM agents simulating survey respondents to a complex network of agents interacting
in simulated environments.

While there are some validation recommendations for traditional ABMs Gräbner (2018), evaluating individual LLMs
in simulations is a prolific topic of study. However, there is little connection between these two bodies of literature,
connecting agent-based social simulations with LLM-based simulations. Popular LLM benchmarks like BigBench
and composite ones like HELM attempt to establish LLM competencies across a wide range of applications such as
mathematical knowledge to morality. While these capabilities do have some bearing on the validity of LLMs in certain
types of simulations, these are only one aspect. There is no holistic framework measuring the many different facets of
simulations such as realism or similarity to behaviors displayed by the real entities to be simulated, particularly for a
specific simulation context. To illustrate, with HELM, we can know that GPT3.5 has general knowledge skills equal to
that of a [ADD]. However, if the same LLM is prompted to take on the persona of a moderately intelligent Reddit user
for simulating conversation, would it achieve realistic results, i.e., would the agent display expected behaviors and not
default to superhuman capabilities? More importantly, how do we know that the emergent behavior from the interaction
of two agents with different intelligence levels mimic real-life behaviors? In this emerging area of Generative ABMs,
while there are several studies exploring the potentials of LLM-based simulations Argyle et al. (2023); Törnberg et al.
(2023) inter alia, there are several open questions about how to establish the validity of these simulations Anthis et al.
(2025); Larooij and Törnberg (2025). Particularly, while individual papers conduct some type of validation, they are
often ad-hoc and have little to do with the final simulation outcome Larooij and Törnberg (2025). An end-to-end unified
framework for identifying errors and biases in LLM social simulations remains elusive.

Therefore, in this work, we bridge the literature on validating ABMs and recent research on evaluating LLM capabilities,
by specifically creating a validation framework for evaluating LLM simulations. Besides the validity concepts in
ABM literature, we also incorporate validity concepts in measurement theory, particularly more recent work aimed at
translating these concepts to Computational Social Science studies Sen et al. (2021); Jacobs and Wallach (2021). We
harmonize analogous validity concepts like face validity (measurement theory) and input validity (ABM validation),
and enumerate and (re)define concepts particularly salient for LLM simulations. Grounding our framework on several
different types of simulation to ensure breadth and comprehensiveness, we present a hypothetical running example and
use it to illustrate different types of validation required in these case studies (Section 4).

Our framework provides a blueprint for those interested in designing their own LLM simulations, allowing the
comparison of different LLM backends (LLM architecture, alignment types, etc) and recommendations for minimizing
threats to validity. Future work can build on our framework to design benchmarks for specific contexts for testing
particular types of validity. Finally, we distill our validation framework into a checklist that is designed to help
researchers conducting social simulation to reflect on and document their design choices (Section 7.1).
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Figure 2: Taxonomy of LLM simulations and example studies.

2 Types of Generative Simulations

To systematically categorize LLM-based social simulations, we propose a taxonomy based on three orthogonal
dimensions: level of abstraction, interactivity, and progression.

Level of Abstraction. This dimension captures the granularity at which agents and social structures are modeled:

1. Micro-Level: Simulations at this level focus on individual agents, each typically instantiated as a separate
LLM instance or prompt context. Agents operate with personal goals, beliefs, and behaviors, allowing the
study of individual-level behavior, e.g., simulating survey respondents Argyle et al. (2023).

2. Macro-Level: These simulations model aggregated societal behavior, often bypassing individual agent
reasoning. Here, the LLM may be prompted to simulate complex macro entities such as countries or firms,
using high-level descriptors rather than explicit agent-based interactions Hua et al. (2024).

3. Micro–Meso–Macro: Simulations that span multiple levels. Micro-level agents interact within meso-level
social structures (e.g., institutions, groups), and emergent macro-level phenomena are either modeled or
observed. This level is particularly well-suited for analyzing how individual behavior leads to collective
outcomes and constitutes the most complex types of simulations Yang et al. (2024).

Interactivity. This dimension distinguishes simulations based on the presence or absence of interactions between
agents or between the agent and the environment:

1. Non-Interactive: Agents or scenarios are modeled in isolation, with no interaction during the simulation
run. These simulations often aim to explore hypothetical reasoning, individual response patterns, or single-
agent decision-making under fixed contexts. Examples would include the use of LLMs for survey response
simulations Argyle et al. (2023).

2. Interactive: Agents engage with each other and/or a simulated environment. Interactions can include
dialogue, influence, cooperation, or competition, and may be direct (agent-to-agent) or mediated (through
the environment). Examples would include LLM-based agents interacting in virtual environment Park et al.
(2022); Törnberg et al. (2023).

Progression. This dimension captures the procedural complexity of the simulation:

1. Single-Step: The simulation comprises a single round of LLM prompting and output. These are typically used
for static analyses or snapshot evaluations, such as a one-time prediction of behavior or a collective response
to a single event Argyle et al. (2023).

2. Multi-Step: Simulations proceed through multiple discrete steps or stages. Agents may form memories, revise
beliefs Ahnert et al. (2025), update goals Park et al. (2022), or adapt strategies based on prior events, allowing
for recursive reasoning and temporally extended narratives Aher et al. (2022); Yang et al. (2024).
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3 Components of a Generative Simulation

The design of non-generative Agent-based Models (ABMs) can be broken down into three components – input, process,
and output (see for example Gräbner (2018)). We adopt the description of these three components to include generative-
or LLM elements. A simulated world consists of agents (A1, . . . . AN), powered by one or more LLMs, and the
environment (E). Interactions between agents are decided by behavioral rules (e.g., constraints) and environmental
interaction. Like ABMs, there are three parts of a simulation:

3.1 Input, i.e., the world at t=0

This is the initialization stage of a simulation. Here we define an agent population, i.e., the personas of all agents
involved in the simulation and the description of the environment where the agents will interact. We also define
rules or heuristics of interactions between all agents and between the agents and the environment. If interactions
between agents are included, they can be constrained – limiting the number of agents a focal agent can interact with –
or unconstrained – allowing every agent to interact with all other agents.

For an LLM-based simulation, we also define the LLM to be used throughout the simulation as well as its hyperparame-
ters (model architecture, size, temperature, etc.).

3.2 Process, i.e., the world at t=1, . . . T-1

Each simulation consists of several process steps where the simulation progresses. Some simulations can be one-
shot, i.e., they do not have any clearly defined process steps, e.g., Argyle et al. (2023), or the wisdom-of-the-crowd
experiments in Aher et al. (2022).

3.3 Output, i.e., the world at t=T

It is at the output stage where we compute the estimand, i.e., the outcome of interest, e.g., the rate of information
diffusion ?.

4 Quality Criteria for Generative Simulations

To effectively evaluate errors and biases in generative LLM social simulations, we take inspiration from the quantitative
social sciences, particularly measurement theory and survey methodology as well as the literature on how to relate
Agent-based models to reality Gräbner (2018). Survey methodology makes use of ‘error frameworks’ that help a survey
designer systematically assess errors like sampling error or response error in the entire survey lifecycle Groves and
Lyberg (2010). Another hallmark of these error frameworks are categorizing errors into measurement errors and
representation errors. Measurement errors occur when incorrectly defining and operationalizing the social construct a
researcher is interested in measuring, while representation errors occur when incorrectly defining and operationalizing
the target population of interest, i.e, to whom the study’s findings generalize to. The canonical “Total Survey Error”
framework Groves and Lyberg (2010) has been extended and adopted to systematically characterize errors in contexts
beyond surveys Amaya et al. (2020), such as studies using digital traces and computational methods Sen et al. (2021)
and data donations Boeschoten et al. (2020); Bosch and Revilla (2022). We adopt a similar perspective by assessing
errors in each component of an LLM simulation (Section 3). Accounting for measurement and representation errors
help establish the validity of social simulations. Measurement theory speaks of another quality dimension besides
validity, i.e., reliability which pertains to how repeatable or stable a measurement. Thus reliability forms the third
dimension of our quality framework.

To that end, We divide our evaluation framework into three main parts mirroring the components of an LLM-simulation.
Each of these three sections describes potential errors of measurements, representation, and reliability, summarized in
Figure 3.

Most of a simulation designer’s design choices occur during the input step, while further assessments need to be carried
out during the process and output stage. To illustrate each of these choices and the quality criteria associated with
them, we use a running example of a hypothetical simulation where we simulate a Reddit-like platform, specifically the
r/vegan subreddit, to assess the impact of the introduction of a new moderation rule, with the following background:
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Figure 3: Quality Framework for Generative LLM simulations.

Simulation level: micro-macro
Estimand: The change in toxicity level of conversations in the subreddit
Agents: Reddit users and moderators
Interactivity: yes

1. Between agents:
(a) users can interact by upvoting or downvoting each other’s posts, commenting on them, reporting

them for violating the subreddit’s rules
(b) Moderators can remove posts and ban other users, i.e., delete posts from the environment or delete

agents from the environment
2. Between agent-environment: the environment is a subreddit-like platform which hosts posts and

comments from agents.
Progression: yes: sequence of content recommendations, posting actions, interactions with posts, and modera-
tion actions in the subreddit

4.1 Input (t = 0)

The input component relies entirely on the specification of the initial parameters of the simulation, particularly the
inputs given to the LLMs and without assessing the LLMs’ responses. The main inputs for an LLM simulation consist
of the agents, the environment, the rules governing possible interactions between the agents as well as the interaction
between agents and the environment, and the LLMs used to simulate the agents. The input stage has the following
processes (not necessarily done sequentially):

Agent Construction. We first start with defining the identity, personality, and roles an LLM agent in our simulation
can take. This step consists largely of so-called prompt engineering and designing prompts that lead to agents who
are faithful to the simulation but can also include examples of typical agent actions, and even memories the agent has
already formed – for example in the form of entries in a vector data base. There is substantial work on persona creation
and the optimal ways of designing agents that are representative and realistic Moon et al. (2024), though a large portion
of this work focuses on demographic personas. There is less work on how other aspects of identity, e.g., personality or
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occupation, can be incorporated into personas. Agent construction primarily runs into errors of representation, since we
have to ensure that the LLM can represent the persona of interest.

For the r/vegan simulation, we create agents using real personas from the actual r/vegan subreddit. We use
three different types of persona prompts for both Reddit users and moderators, albeit with different types of
information — 1) username only, 2) username and the name of the other subreddits this user is most active in, 3)
username, other active subreddits and recent posting, comments, and moderating history.

Interaction Specification. If the simulation is interactive, then we define interaction rules between agents and between
the agent and environment. As with the agent prompts, these interaction rules can also be prompted in different ways,
e.g., with examples of real-world interactions. At this step, it is important to consider whether the interaction rules
are a good proxy of real-world mechanisms as this has important bearings on the generalizability of the findings of
the simulation, akin to assessing the generalizability of controlled experiments to real-world settings. Interaction
specification runs into errors of measurement, since poorly specified interaction rules can lead to invalid measurements
of the final estimand.

In our example, agents represent Reddit users and moderators. Therefore, interaction rules in the simulation
reflect the interactions that are made possible by the affordances of the platform.
Agent-Environment interaction. Agents can create Reddit-like posts, reply to posts, upvote and downvote
posts, as well as report posts. Privileged agents, i.e., moderators can delete posts. Once created, a post becomes
part of the environment, as do any replies and votes associated with the post. The environment in turn mimics a
Reddit-like feed with algorithmic ranking of posts and comments. Similar simulations are described by Park
et al. (2022) for Reddit, and Törnberg et al. (2023); Nudo et al. (2025); Yang et al. (2024); Rossetti et al. (2024)
for X (formerly “Twitter”).
Agent-Agent interaction. Agents interact with each other indirectly through the environment, i.e., they can
comment on each other’s posts, upvote or downvote them, or report them. Moderators can also delete posts from
the platform (environment).

Prompt Variations. LLMs have high prompt brittleness Sclar et al. (2023), therefore prompt variations might be
necessary to rule out the results of a particularly fortunate version on simulation results. Ideally prompts should be varied
systematically, however, the use of natural language in prompting opens up a vast prompt space that may be difficult to
navigate in a principled manner. Nonetheless, the simulation context might help inform specific variations, e.g., using
different demographic descriptors for demographic prompting. Prompt engineering approaches like chain-of-thought
prompting, self-consistency, and others should be reported at this stage. Prompt variations can help surface reliability
issues.

For the r/vegan simulation, we design prompt variations based on stylistic and format changes, e.g., QA-style
(“username: u/bleedingheart. . . ”) input Santurkar et al. (2023) vs. text-based instructions (“your username is
u/bleedingheart. . . ”). For the interaction instructions, we vary the order of the interactions an agent can do.

4.2 Process (t = 1, 2, . . . , T − 1)

The process component includes different simulations stages or steps (not to be confused with design steps like agent
construction) of a simulation. Simulations which are one-step involve only one process step, t = 1, which is functionally
equivalent to the final stage or the state of the simulation in the output component. Multi-step simulations involve several
steps and end with the penultimate state of the simulation. The transition between the states in the process component
typically models some type of temporal progression (though spatial progressions might also apply). The most crucial
design choice in the process stage is whether interactions happen sequentially or simultaneously. This choice can
introduce path dependencies in the simulation and can thus substantially influence simulation outcomes. Since truly
simultaneous interaction is oftentimes hard to implement, a randomization scheme for the order of interactions can
be used instead. If a simulation is run multiple times with randomized interaction orders, a dependence of simulation
results on interaction order can be ruled out. In addition, several assessments of simulation quality can be made at every
step, initialized at the first one:

Agentic Fidelity. We should first assess agentic fidelity, i.e., if the LLM has successfully adopted the persona we had
provided during the agent construction phase. It is important to assess agentic fidelity independent of overall validity
of the final estimand (discussed in more detail in Section ‘Output’), since validity of macroscopic measures might be
affected by the (in)validity of microscopic behavior, especially since there is evidence that LLMs poorly represent
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certain groups Santurkar et al. (2023); Sen et al. (2025). Furthermore, different microscopic configurations might lead
to the same macroscopic patterns, weakening the hypothesized link between microscopic mechanisms and macroscopic
outcomes. Assessing the fidelity of agents helps to establish the plausibility of this link. As such this step constitutes a
first check of face validity. Following from agent construction, issues in agentic fidelity are errors of representation.

There is no one single way to establish agentic fidelity. Previous research has relied on comparing the LLM agents’
behavior to human behavior – also called a “Turing test” by Argyle et al. (2023) who compare the LLMs’ answers
to survey questions with real humans’ answers or use another LLM to judge agentic fidelity Huang et al. (2024).
Justifications of agentic fidelity can also be theoretical, e.g., using a representative survey population to create
personas Törnberg et al. (2023).

For the r/vegan simulation, we are interested in simulating Reddit users of the r/vegan subreddit. A first ‘sniff
test’ for agent fidelity could be provided by checking the responses of LLM agents to a survey that assesses
the respondent’s attitude towards a vegan lifestyle. This assumes that all users of the r/vegan subreddit are
interested in adopting a vegan lifestyle and would establish that the LLM agents have some understanding
of the population they are supposed to simulate. Alternatively, timelines of posts and comments of the real
users active in r/vegan could be sampled and used as activity histories for agents in the simulation input stage.
Following a leave-one-out design similar to the design proposed by Nudo et al. (2025), LLM agents could
be tasked to regenerate a post or comment by the modeled user given the post’s or comment’s context (e.g.,
subreddit description or comment thread). The similarity between the original post and the regenerated post
could be used as a metric to assess the fidelity of the LLM agent’s posting behavior.

Interaction Fidelity. Related to agentic fidelity, we should also assess if the interactions between agents and the
interactions between the agents and the environment are realistic. Assessing this interaction fidelity is important since
certain behaviors are harder to simulate for LLMs because of how they have been engineered: specifically, LLMs are
subject to safety guardrails, preventing them from producing overly hateful or toxic text Nudo et al. (2025), or text with
questionable or even illegal content, such as a manual for building a bomb. The same principles of validation that apply
to agentic fidelity apply to interactions, e.g., the Turing test when human interactions cannot be differentiated from
LLM interactions. Concrete examples include comparing the characteristics of the social networks created by LLM
agents against that of human social networks Chang et al. (2025), or comparing the self-reported social costs of an
interaction to previous studies with human participants (Ahnert et al., 2025). Following interaction specification, issues
at this stage can contribute to errors of measurement.

For both agentic and interaction fidelity, we recommend conducting multiple tests to establish convergent validity and
triangulate. It is also important to assess the interplay between agent personas and interaction. For instance, Chang et al.
find that political agents especially show higher than real-world homophily rates when forming social ties.

In our example simulation, we can compare the behavioral traces of our LLM agents with that of real-world
behavior on r/vegan. Such a comparison could be manual (humans being asked to differentiate between real and
LLM-generated posts and comments), automatic (comparing the semantic, topical, syntactic similarity between
human and LLM-generated content), or both. We should specifically keep an eye towards behaviors that are
related to our macro estimand, i.e, toxicity levels of conversations and explicitly check for this at every step of
the process.

Simulation Drift. Simulation drift refers to a lack of agentic and interaction fidelity over multiple steps of the simulation.
Simulation drift does not entail expected changes in the environment and agents’ behavior based on an intervention
and it is important to disentangle changes in the LLMs’ behavior due to an intervention or expected changes during
the progression or the simulation vs. reduced fidelity of the agents. Common reasons behind simulation drift include
the LLM reverting back to its AI agent persona after a few rounds of conversation Choi et al. (2024) or the cognitive
load of information accumulated during the previous steps. Simulation drift is a reliability error, since it threatens the
stability of the simulation.

In our toy simulation, LLM agents portraying Reddit users might start replying like AI agents several process
steps into the simulation.
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4.3 Output (t = T)

The final component of a simulation is the output stage, e.g., the final state of the simulation after its last process step.
At this stage, the estimand variable, i.e., the outcome of interest, is measured.

Construct Validity. Construct validity concerns the correct definition and operationalization of the outcome measure.
This is particularly important for intangible social constructs which need to be measured through proxies, e.g., the
number of slurs used as a proxy for toxicity. Much research has been dedicated to measuring and improving construct
validity Jacobs and Wallach (2021). However, this process is highly context-dependent and there are few general tests
that are applicable to different types of measurement. This step is essential in LLM simulations but might have little
to do with the LLM agents. Researchers can establish the validity of their final measure in different ways, following
best practices laid out for quantitative measurement theory Jacobs and Wallach (2021). Threats to construct validity
constitute errors of measurement.

In our running example, we might use the Perspective API to measure the toxicity of all generated conversation
threads on our simulated r/vegan subreddit as has been done in past research on Reddit discussions Xia et al.
(2020); Kumar et al. (2023), including LLM-based simulation studies Törnberg et al. (2023). However, it should
be noted that the Perspective API has several drawbacks and validity issues Sap et al. (2019).

Simulation Sensitivity. The last quality concern in the simulation is related to reliability where the designer should
establish the stability of their findings, especially since LLMs are highly stochastic Bender et al. (2021). Similar to how
Machine Learning practitioners are encouraged to report the average of their experimental results across multiple runs
along with measures of stability (e.g., variance, confidence intervals, etc.), we also recommend running the simulation
with identical parameters end-to-end across several runs and reporting the average estimand and measures of stability for
the ensemble of runs. Computing simulation stability is relatively straightforward, though resource and time intensive.
Here, the number of simulation runs needed depends on the acceptable level of uncertainty in the outcome measure. It is
also not clear how to establish the ideal number of runs, but machine learning experiments can provide inspiration here.

For our toy simulation, we would run the simulation 100 times and report the average Perspective API-based
toxicity scores across these runs with standard deviations.

The above-mentioned framework is also distilled into a checklist that simulation designers can use to report the
validation steps they implemented for their study. The full checklist can be found in Section 7.1, while filled-out
examples are in Section 7.2.

5 Related Work

5.1 Agent-based Models

Components of agent-based models. Agent-based models (ABMs) are computational simulations of systems that are
composed of many agents. The general aim of such models is to understand emergent, macro-scale system outcomes
that arise from local, micro-scale interactions between agents. They explore the simplest set of behavioral assumptions
required to generate a macro pattern of explanatory interest. ABMs provide theoretical leverage where the global
patterns of interest are more than the aggregation of individual attributes, but at the same time, the emergent pattern
cannot be understood without a bottom-up dynamical model (Macy and Willer, 2002). In other words, ABMs can be
understood as theory so well specified that it can be coded as a simulation.

What is conceptualized as agent can be very diverse: for example, ABMs have been successfully used to model
swarms of animals (Beni, 2020), the spread of an infectious disease in schools (Lasser et al., 2021), or the emergence
of critical traffic scenarios with autonomous vehicles (Hallerbach et al., 2018). Next to these diverse applications,
ABMs have also been used to successfully model groups of humans and emergent phenomena within them, such as
segregation (Schelling, 1971), opinion polarization (Li and Xiao, 2017), and social contagion (Iacopini et al., 2019).

Agents in these models have individual characteristics and interact with other agents based on a set of interaction rules.
For example, in Schelling’s model of segregation (Schelling, 1971), agents have one of a set of two possible attributes
(for example, being “blue” or “red”) and exist in a two-dimensional grid-like world. They observe the attributes of
the agents in their immediate neighborhood and decide to move to a new, previously unoccupied position in the grid
depending on whether a certain number of their neighbors have the same attribute as themselves. Depending on the
threshold for the number of neighbors required to have the same attribute, the model shows segregation of agents with

8



WORKING PAPER - JULY 19, 2025

different attributes into separated regions on the grid. While this model is obviously a very simplified toy example, it
can still be useful to explain segregation in real neighborhoods based on attributes such as race or political orientation.
Allowing agents to change their attributes (oftentimes also called “states”), depending on for example on interactions
with other agents or time, introduces additional complexity into the model that empowers it to explain for example
social contagion (Iacopini et al., 2019).

As already became apparent in the above-mentioned example, an ABM can be more than a collection of agents and
interaction rules: usually, it also includes some metric to measure “proximity” between agents which then defines which
agents can interact with each other. This metric can be induced by situating the agents in an euclidean world with
one, two or three dimensions. Alternatively, it is common to combine ABMs with networks that are not necessarily
embedded in an euclidean world but rather define which interactions between agents are possible based on the existence
of network edges between these agents. An example is the simulation of interactions of people on a social medium,
where the follower-network determines which content is seen by which agent. If the ABM introduces such a notion of
proximity and restricts possible agent interactions based on it, we call the interactions “constrained”.

Next to a notion of “proximity”, ABMs oftentimes also include an environment that influences how agents behave or
that agents can interact with and even change. An example would be a simulation of the spread of an infection in a
society in which different containment measures are implemented at different points in time. One could also imagine
that in this simulation, the implementation of containment measures depend on the number of currently infected agents,
thus implementing a feedback loop between the dynamics of the spread of the infection and the state of the environment.

5.2 Validating Agent-based models

The main challenge in using computer simulations to study social phenomena is concern about their predictive
validity (Bharathy and Silverman, 2010; Windrum et al., 2007; Fagiolo et al., 2006). Here, Gräbner (2018) provides a
useful framework for how to relate such computational models to reality along several levels of validity. The first level,
input validity, assesses the ability of the model to represent aspects of the real system correctly at time t = 0. This
is usually achieved by comparing descriptive statistics of the computational model and the real system. For example,
if a soccer game is modeled, the computational model should include 11 players and a playing field of adequate
size. The second level, process validity, assesses the credibility of the mechanisms that are encoded in the model. As
mechanisms are oftentimes not directly observable, this usually requires to make an argument for the plausibility of
encoded mechanisms that is grounded in what is known about the real system and its behavior.

The third level, descriptive output validity, assesses whether the output of the model replicates existing observational
data of the system. This is oftentimes the highest reachable validation level for research using ABMs, and even this bar
is already very high: validating the output of the model against observational data requires that what is measured as
model output is compatible with what is observable about the real system. If both model output and observational data
are consistent, this is a relatively strong indicator that the simulation can model the system in a useful way. However, this
still leaves open the possibility that different model configurations lead to the same output, as micro-specifications of
agent behavior in the model can be a sufficient but not the only possible explanation. This is why the assessment of the
credibility of the mechanisms that are encoded in the model is crucial to plausibly argue that the encoded mechanisms
are indeed responsible for driving the observed behavior. Another pitfall when it comes to descriptive output validation
is the danger of overfitting the model to observational data. ABMs often have a number of free parameters that need to
be calibrated as they are not directly observable or they have no direct counterpart in the real system. For this calibration,
observational data about the system is used. The same data then cannot be used to assess the fit of the model to the
observational data, as good consistency between model output and observational data is a natural outcome of the fitting
process. Therefore, some observational information about the system needs to be held back and not used to calibrate
the model to credibly assess descriptive output validity.

The fourth and last level of validity is provided by the assessment of the predictive power of the model: how well can
the model predict future states of the system? And even more extreme: does the model still predict future states of
the system if the functioning of a mechanism is changed in the system and the model? Assessing predictive validity
requires the acquisition of observational data about the system that is not used to parameterize or train the model but
rather held back to be used for validation. Practically, this can be achieved by using time-resolved data that is separated
into a subset observed earlier that is used to parameterize the model, and a subset observed later that is held back and
used to validate the simulated model. In the best case, the data from the later model includes a change in the system that
can be mirrored in the model by adapting the respective mechanism. If model output and observational data are still
consistent, this is further evidence that the encoded mechanisms are indeed what also drives system behavior in reality.

Modeling increasingly complex systems oftentimes requires the introduction of more and more parameters and rules to
ABMs. As a result, a common criticism of ABMs is that the results are “built into the model” (Waldherr and Wijermans,

9



WORKING PAPER - JULY 19, 2025

2013) rather than emerging from it. This criticism is not completely unwarranted as, particularly in the context of
modeling human behavior, it is oftentimes hard to cleanly justify why a particular social or psychological mechanism
as driver of behavior is included while another is omitted. Due to a lack of direct observability of these mechanisms,
researchers need to resort to observable proxies but even for these, observational data is generally sparse. As a result, the
choice of mechanisms and their parametrization can be somewhat arbitrary and the above-mentioned steps for validation
cannot be completed. Here, the use of LLMs as “generators of human behavior” could provide way forward. LLMs
promise to encode a vide variety of relationships between perception (e.g., inputs, prompts) and actions (e.g., outputs,
generated text). To which extent these relationships reflect real human behavior is subject to ongoing research, and
ways to assess their validity in the context of ABMs is subject of this contribution. However, compared to the current
baseline of hard-coded probabilistic interaction rules in ABMs, it is likely that substantial improvements regarding the
realism of the simulated behaviors are possible.

5.3 Social Simulations with Large Language Models

Potential of Social Simulations. Recent work has demonstrated the potential of social simulations to partially automate
core aspects of social science research. Bail (2024) envisions generative AI supporting tasks such as hypothesis
generation and experimental design, while Manning et al. (2024) and Swanson et al. (2024) go further by implementing
automated pipelines where LLM agents simulate study participants and conduct in silico experiments. These systems
showcase how LLMs can simulate human behavior to explore hypotheses, rediscover known causal relationships, and
evaluate interventions.

Social simulations also offer a sandbox for exploring interventions that would be infeasible or unethical to test in the real
world. For example, Törnberg et al. (2023) simulate a social media platform to test how different news feed algorithms
influence cross-partisan discourse, while Park et al. (2022) develop a tool for testing the impact of alternative community
rules and goals. Rossetti et al. (2024) propose creating “digital twins” of online platforms, enabling researchers to
simulate user engagement and policy interventions without relying on proprietary social network data.

In addition to their potential for social science research, social simulations have been proposed as benchmarks for
evaluating LLM capabilities. Bailis et al. (2024) introduce a dynamic benchmark based on the social game Werewolf, in
which LLM agents with hidden roles engage in deception and persuasion. As more capable models compete against
one another, such simulations offer a moving target for evaluation, unlike static benchmarks.

Drawbacks and Threats to Validity. Despite these promising directions, several recent studies have pointed to
important threats to validity in LLM-based social simulations. First, Taubenfeld et al. (2024) find that LLM agents
often converge toward generic or default behaviors, even when assigned distinct personas. This undermines attempts to
simulate realistic diversity in agent behavior. Second, Barrie and Törnberg (2025) raise concerns that some simulated
outcomes may reflect memorized facts or narratives from the training corpus rather than emergent dynamics—especially
when simulating historical or well-known social patterns. Third, Larooij and Törnberg (2025) emphasize that the black-
box nature of LLMs violates core assumptions of traditional agent-based modeling: unlike ABMs with interpretable
rules, LLM agents do not have transparent mechanisms linking micro-level behavior to macro-level outcomes. This
opacity makes it difficult to identify what processes the model is actually simulating. Finally, social simulations are
computationally expensive. As noted by Bender et al. (2021) and Larooij and Törnberg (2025), individual LLM queries
are already costly, and simulations often require many iterations to assess robustness—making large-scale experiments
prohibitively resource-intensive.

5.4 Evaluating Large Language Models

Given the versatility of generative large language models, there is a broad range of available evaluation suites, metrics,
and benchmarks. Polymorphic benchmarks like MMLU Hendrycks et al. (2020), BIG-bench Srivastava et al. (2023),
HELM Liang et al. (2022), and AGIEval Zhong et al. (2023) assess LLM capabilities across domains like reasoning,
knowledge, and multitask performance. However, these benchmarks exhibit integrity issues, e.g. data errors and
contamination. McIntosh et al. (2025) critique 23 state-of-the-art benchmarks for prompt sensitivity, evaluator diversity,
and cultural bias, arguing for more robust and adaptive evaluation frameworks. Human evaluation is still considered the
gold standard of LLM evaluation for certain use case, e.g., . An emergent paradigm—LLM-as-Judge—uses one model
to evaluate another LLM’s outputs, facilitating scalability but also raising concerns around evaluator bias and lack of
transparency Dietz et al. (2025).

There are also evaluation suites tailored to measure social aspects of LLMs, e.g., bias, fairness, and representative-
ness Gallegos et al. (2024). Typical bias tests include stereotype evaluations (e.g., CrowS-pairs Nangia et al. (2020) or
marked words Cheng et al. (2023)), and fact-based hallucination detection using benchmarks like TruthfulQA Lin et al.
(2021) or SHADES Mitchell et al. (2025) for multilingual fairness.
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There is comparatively less work on LLM social simulations. Huang et al. (2024) conduct extensive experiments of
different attributes of LLM agents in a simulation to establish agentic fidelity. Larooij and Törnberg (2025) survey
35 social simulation papers for the type of validation techniques applied, classifying them into five main categories,
including human evaluation of alignment between LLMs and reality, benchmarking against existing social patterns, and
comparing against other simulation approaches. They find that a majority of current studies conduct ‘believability’-based
validations, testing superficial generations of the LLMs that may have little to do with the final macro estimate.

6 Discussion

Large Language Models (LLMs) offer a novel approach to agent-based simulations, enabling rich, realistic modeling of
social behavior through text generation. However questions about how to evaluate the validity of these simulations,
especially given inherent biases and alignment artifacts, abound. We propose a unified validation framework that
bridges traditional ABM validation methods with measurement theory and recent LLM evaluation research. We define
and align key validity concepts, illustrate them through simulation examples, and present a practical checklist to guide
researchers in designing and assessing LLM-based simulations.

Designing Benchmarks for GABMs. While there are several general-purpose benchmarks and evaluation suites, e.g.,
HELM, BigBench, none focus on the specific evaluation criteria needed for simulations. Our framework lays out these
criteria, e.g., agentic fidelity, and provides a blueprint for the design of concrete simulation-focused benchmarks for
LLMs. Such benchmarks would naturally be polymorphic, i.e., testing several abilities of LLMs such as their ability to
simulate a particular group of people through various metrics (e.g., similar opinion generation, similar social media
posting behavior) or their ability to adhere to a persona across multiple coversation rounds.

Recommendations and Best Practices. By organizing our framework into three important quality dimensions —
measurement, representation, and reliability, and tying them to the different components of generative LLM simulation,
we enable researchers to systematically reflect on the design process of their simulation. Certain errors might be outside
a researchers control, e.g., guardrails of a commercial LLMs; however, they may still document that so that future
research can try and address such errors. Finally, our framework can provide guidance on which problems are best
solved by generative ABMs and help establish their limits, e.g., to which target population the findings of a potential
simulation study would apply to.

More practically, the checklist in Section 7.1 is specifically designed to be used by designers of LLM simulations to
improve documentation and reproducibility. As an example, we provide a filled out version of the checklist for the
social network simulation study by Törnberg et al. (2023) in Section 7.2.

Limitations. We acknowledge that our taxonomy is quite course; this is to ensure an optimal trade-off between
simplicity and richness. Future work can extend our modular taxonomy to include more granular dimensions, e.g., 1)
extending interactivity to a spectrum with subdimensions like environment-only, peer-to-peer, group-level, etc., or 2)
the cognitive abilities of agents. We also note that our framework is not designed to be comprehensive or complete —
such a framework would be difficult to devise in the face of rapidly evolving language model technology. Nonetheless,
we hope our framework is modular so that new sources of errors can be easily integrated in future.
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7 Appendix

7.1 Checklist

In addition to the input, process, and output components discussed in Section 4, we also include two supplementary
sections on Reproducibility and Ethics.

Preliminaries

• Simulation level: [micro, macro, micro-macro, micro-meso-macro]
• Estimand:
• Agents:
• Interactivity: [yes, no]

– Between agents?
– Between agent-environment?

• Progression: [single-step, multi-step]

Input: Agent Construction

• What is the target population the agents are meant to simulate?
• What identity variables and other information make up the personas of the agents?
• Why and how were they chosen?
• Which actions can an agent take (only include actions here that are not interactions between agents or agents

and the environment)?

Input: Interaction Rule Specification

• Which interactions can an agent make with other agents and which rules govern these interactions?
• If there is an environment: which interactions can an agent make with the environment and which rules govern

these interactions?
• Are interactions with other agents and/or the environment happening simultaneously or sequentially?

Input: Prompt Variation Assessment

• Do you report all the prompts you have used?
• Did you assess the impact of prompt variations in inducing personas?
• Did you assess the impact of prompt variations in prompting agent interactions?

Process: Agentic Fidelity

How do you establish that the LLM agent has successfully simulated the given persona?

Process: Interaction Fidelity

How do you establish that the agent-agent behavior and agent-environment behavior is realistic?

Process: Simulation drift (only if your simulation has multiple steps)

• Did you assess agent persona drift across multiple steps?
• Did you assess interaction drift across multiple steps?
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Output: Construct Validity

Construct validity: How is the estimand measured?

Output: Simulation Stability

Did you report the average estimand and variance estimates for multiple runs of the simulation?

LLM-Specific Dimensions

• Which model(s) have been used and why?
• Do you make use of the system prompt or the user prompt?
• Did you report exact model parameters and hyperparameters?
• Did you assess the impact of temperature variation?
• How do you extract and process the LLMs’ responses?
• What type of computation infrastructure is used to run the simulation?

7.2 Filled-out Checklists for Existing Papers

Simulating Recommendation Algorithms Törnberg et al. (2023)

Preliminaries

• Simulation level: Micro–Macro
• Estimand: Measures of cross-partisan interaction and toxicity (e.g., reply rates, toxicity scores)
• Agents: LLM-based agents based on ANES respondents
• Interactivity: Yes

– Between agents? Yes
– Agent–environment? Yes

• Progression: Multi-step

Input: Agent Construction

• Target population: U.S. Twitter users from ANES 2020
• Identity variables: Demographics, political affiliation, cultural/personal interests
• Selection rationale: To reflect real-world diversity in behavior and social identity; based on survey calibration

Input: Interaction Rule Specification

• Interaction rules: Post, share, like, and comment based on personalized feed exposure
• Agent tasks: Posting/sharing articles, engaging with content
• Environment interaction: Feed determined by algorithmic filtering
• Environment realism: Stylized but plausible representation of social media

Input: Prompt Variation Assessment

• All prompts reported? Partially — examples in Appendix
• Persona variation assessed? No
• Interaction prompt variation assessed? No

16



WORKING PAPER - JULY 19, 2025

Process: Agentic fidelity

Survey-calibrated personas; no external validation

Process: Interaction fidelity

Not validated; realism assumed from LLM capability

Process: Simulation drift

• Persona drift: Not assessed
• Interaction drift: Not assessed

Output: Construct validity

Estimands derived using Perspective API.

Output: Simulation stability

Averages reported; no variance estimates provided

LLM-Specific Dimensions

• Model(s) used: GPT 3.5
• System/user prompts used? Not specified
• Parameters/hyperparameters reported? No
• Temperature sensitivity tested? No
• Response extraction: Not specified
• Computation infrastructure: Not reported

7.3 Glossary

Agent-based Model (ABM): The conceptual framework or mathematical/computational model that defines the agents,
their behaviors, the environment, and the rules of interaction. It is essentially the design and structure of the system that
represents how agents behave and interact. The ABM defines the theoretical setup and logic behind the simulation.

Agent: An autonomous entity with specific behaviors, attributes, and rules for decision-making within a simulation.
Agents can represent individuals, groups, or entities. In a traffic simulation, each car or driver is an agent with behaviors
like acceleration, braking, or lane-changing.

Environment: The virtual space in which agents operate, including both physical and social elements that influence
their behavior. It provides context for the agents’ actions. Some ABMs may not distinctly model environments or
allow interactions with it. Example: A city map in a simulation where agents (residents) navigate roads, interact with
infrastructure, and make decisions based on their surroundings.

Interaction: The way agents influence each other or the environment through direct or indirect actions. Interactions
can be physical, social, or informational. ABMs may have no interaction among the agents, some constrained form of
interaction (e.g., due to simulating physical space), or fully unconstrained forms of interaction where all agents can
interact with other agents. Example: In a predator-prey simulation, a predator agent interacts with a prey agent by
hunting, while prey agents react by fleeing.
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